Probability Association Approach in Automatic Image Annotation

نویسندگان

  • Feng Xu
  • Yu-Jin Zhang
چکیده

introduction Content-based image retrieval (CBIR) has wide applications in public life. Either from a static image database or from the Web, one can search for a specific image, generally browse to make an interactive choice, and search for a picture to go with a broad story or to illustrate a document. Although CBIR has been well studied, it is still a challenging problem to search for images from a large image database because of the well-acknowledged semantic gap between low-level features and high-level semantic concepts. An alternative solution is to use keyword-based approaches, which usually associate images with keywords by either manually labeling or automatically extracting surrounding text from Web pages. Although such a solution is widely adopted by most existing commercial image search engines, it is not perfect. First, manual annotation, though precise, is expensive and difficult to extend to large-scale databases. Second, automatically extracted surrounding text might by incomplete and ambiguous in describing images, and even more, surrounding text may not be available in some applications. To overcome these problems, automated image annotation is considered as a promising approach in understanding and describing the content of images. Automatic image annotation is derived from the manual annotation for CBIR. Since the semantic gap degrades the results of image search, the text descriptions are considered. It is desired that the text and the visual features cooperate to drive more effective search. The text labels, as the high-level features, and the visual features, Probability Association Approach in Automatic Image Annotation as the low-level features, are complementary for image content description. Therefore, automatic image annotation becomes an important research issue in image retrieval. In this chapter, some approaches for automatic image annotation will be reviewed and one of the typical approaches is described in detail. Then keyword-based image retrieval is introduced. The general applications of automatic image annotation are summarized and explained by figure examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tags Re-ranking Using Multi-level Features in Automatic Image Annotation

Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...

متن کامل

Fuzzy Neighbor Voting for Automatic Image Annotation

With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...

متن کامل

Scalable Image Annotation by Summarizing Training Samples into Labeled Prototypes

By increasing the number of images, it is essential to provide fast search methods and intelligent filtering of images. To handle images in large datasets, some relevant tags are assigned to each image to for describing its content. Automatic Image Annotation (AIA) aims to automatically assign a group of keywords to an image based on visual content of the image. AIA frameworks have two main sta...

متن کامل

Cross-Media Retrieval using Probabilistic Model of Automatic Image Annotation

In recent years, automatic image annotation (AIA) has been applied to cross-media retrieval usually due to its advantage of mining correlations of images and annotation texts efficiently. However, some AIA methods just annotate images as a unit and the accuracy of annotation may not be acceptable. In this paper, we propose a kind of probabilistic model which may assign keywords to an un-annotat...

متن کامل

Text Analysis for Automatic Image Annotation

We present a novel approach to automatically annotate images using associated text. We detect and classify all entities (persons and objects) in the text after which we determine the salience (the importance of an entity in a text) and visualness (the extent to which an entity can be perceived visually) of these entities. We combine these measures to compute the probability that an entity is pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015